

Technical Data Sheet

Pressure • Temperature • Humidity • Air Velocity • Airflow • Sound level

Kimo DBM 610 Air Flow Capture Hood Balometer

Pitot tube **Type L**

Pitot tube Type **L**

Pitot tube with ellipsoidal head. An intake for total pressure and 6 holes for static pressure. Body made of stainless steel.

Pitot tube Type L with TC K

Pitot tube with ellipsoidal head. An intake for total pressure and 6 holes for static pressure. Sheathed thermocouple K probe integrated, with connection cable length 1,5 m.

Body made of stainless steel

Presentation

KIMO offers a wide range of high-quality and accurate **Pitot tubes**, as per the AFNOR NFX 10-112 norm.

These **Pitot tubes**, when being connected to a differential column / or needle / or electronical manometer, can measure the dynamic pressure of a moving fluid in a duct, and then can deduct its air velocity in m/s and its airflow in m3/h.

These **Pitot tubes** are used in HVAC field, vacuum cleaning and pneumatical transport. They are mainly dedicated to measure hot and particle-charged air, and also high air velocity.

Features

Norm	AFNOR NFX10-112. Annex 4 dated 14.9.77. This norm meets the requirements of the International Norm ISO 3966.
Model	
Coefficient	•
Accuracy	Better than 1 %, for a \pm 10 ° alignment to the fluid
	flow.
Quality	stainless steel 316 L
Operating temperature	from 0 to 600 °C in standard and up to 1000 °C in option (except Ø 3 mm).

- The extent error of an air velocity or airflow measurement with a KIMO Pitot tube remains inferior to 2%, when being carried out as per the NFX10-112 norm.
- It is recommended to carry out a calibration of the Pitot tube, in order to determine its exact coefficient.

Dimensions

F: head Total pressure probe Ε 6 holes for static pressure Lg: effective length - shaft - (cf. Table below) Ø NOMINAL ØC Ø,6 Miniature female plug Static pressure outlet D Thermocouple K Total pressure outlet Ø 6 Pitot tube Type L with TC K

Pitot tube Type L

В øс D Ε F R Α Pitot tube Ø 3 mm 17 32 10 30 48 9 25 Pitot tube Ø 6 mm 25 40 10 45 48 96 18 Pitot tube Ø 8 mm 25 40 10 45 64 128 24 Pitot tube Ø 12 mm 25 50 16 60 192 96 36 25 Pitot tube Ø 14 mm 50 16 60 224

Ranges

Pitot tube Type L

Diameter	Reference	Length
Ø 3 mm	TPL-03-100 TPL-03-200 TPL-03-300	100 mm 200 mm 300 mm
Ø 6 mm	TPL-06-300 TPL-06-500 TPL-06-800	300mm 500 mm 800 mm
Ø 8 mm	TPL-08-1000 TPL-08-1250	1000 mm 1250 mm
Ø 12 mm	TPL-12-1500 TPL-12-2000	1500 mm 2000 mm
Ø 14 mm	TPL-14-2500 TPL-14-3000	2500 mm 3000 mm

Pitot tube Type L with TC K

Diameter	Reference	Length
Ø 3 mm	TPL-03-100-T TPL-03-200-T TPL-03-300-T	100 mm 200 mm 300 mm
Ø 6 mm	TPL-06-300-T TPL-06-500-T TPL-06-800-T	300 mm 500 mm 800 mm
Ø 8 mm	TPL-08-1000-T TPL-08-1250-T	1000 mm 1250 mm
Ø 12 mm	TPL-12-1500-T TPL-12-2000-T	1500 mm 2000 mm
Ø 14 mm	TPL-14-2500-T TPL-14-3000-T	2500 mm 3000 mm

netzerotools.com

Operating

The **Pitot tube** must be introduced perpendicularly into the duct, in several points pre-determined (see table "location of measuring points").

The head (ending with an ellipsoidal nose) must be maintained parallel and facing the flow.

The total pressure (+) catched by the nose, is connected to the + of the manometer

The static pressure (-) catched by the holes of the head, is connected to the - of the manometer.

The connection cable of the thermocouple K probe is connected to the thermocouple K inlet of the manometer (only on the **Pitot type L with TC K**).

Then, the instrument can display the dynamic pressure, also named "velocity pressure".

The dynamic pressure corresponds to the difference between the total pressure and the static pressure: Pd = Pt - Ps

With the dynamic pressure in mm $\rm H_2O$ or in Pa, we can calculate the air velocity in m/s, with the simplified BERNOULLI formula :

V in m/s à 20 °C : 1,291√**Pd** in Pa

V in m/s : 4,05 $\sqrt{\Delta P}$ en mm CE

Formula to get the velocity, with temperature balancing of the airflow:

V in m/s = **K** x
$$\sqrt{\frac{574,2 \ \Theta + 156842,77}{Po}}$$
 x $\sqrt{\Delta P}$ in Pa

With

Po = barometric pressure in Pa

 Θ = temperature in °C

K = coefficient of the Pitot tube

• Connection glands made of nickel plated brass (to install the Pitot tube in a fixed location)

- Sliding connections with nipple, made of stainless steel of Teflon
- Extension cable for thermocouple K class 1 :
- Rubber sealing caps : come in a 10-unit bag
- Caps : come in a 10-unit bag
- Graduation (mm) red-marked on the shaft
- Tubes
- Straight Pitot tube type L and type L with TC K:
 You can directly make the measurements by plunging this tube into the
 air duct.

Diameters and dimensions : same as the **Pitot tube** NPL curved.

Feel free to contact KIMO for any special case, any special manufacturing.